|
@@ -3,11 +3,13 @@ from typing import Any
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
from core.rag.datasource.retrieval_service import RetrievalService
|
|
|
+from core.rag.entities.context_entities import DocumentContext
|
|
|
from core.rag.models.document import Document as RetrievalDocument
|
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
|
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
|
|
from extensions.ext_database import db
|
|
|
-from models.dataset import Dataset, Document, DocumentSegment
|
|
|
+from models.dataset import Dataset
|
|
|
+from models.dataset import Document as DatasetDocument
|
|
|
from services.external_knowledge_service import ExternalDatasetService
|
|
|
|
|
|
default_retrieval_model = {
|
|
@@ -54,7 +56,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|
|
|
|
|
if not dataset:
|
|
|
return ""
|
|
|
-
|
|
|
for hit_callback in self.hit_callbacks:
|
|
|
hit_callback.on_query(query, dataset.id)
|
|
|
if dataset.provider == "external":
|
|
@@ -125,7 +126,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|
|
)
|
|
|
else:
|
|
|
documents = []
|
|
|
-
|
|
|
for hit_callback in self.hit_callbacks:
|
|
|
hit_callback.on_tool_end(documents)
|
|
|
document_score_list = {}
|
|
@@ -134,50 +134,46 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|
|
if item.metadata is not None and item.metadata.get("score"):
|
|
|
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
|
document_context_list = []
|
|
|
- index_node_ids = [document.metadata["doc_id"] for document in documents]
|
|
|
- segments = DocumentSegment.query.filter(
|
|
|
- DocumentSegment.dataset_id == self.dataset_id,
|
|
|
- DocumentSegment.completed_at.isnot(None),
|
|
|
- DocumentSegment.status == "completed",
|
|
|
- DocumentSegment.enabled == True,
|
|
|
- DocumentSegment.index_node_id.in_(index_node_ids),
|
|
|
- ).all()
|
|
|
-
|
|
|
- if segments:
|
|
|
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
|
- sorted_segments = sorted(
|
|
|
- segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
|
|
- )
|
|
|
- for segment in sorted_segments:
|
|
|
+ records = RetrievalService.format_retrieval_documents(documents)
|
|
|
+ if records:
|
|
|
+ for record in records:
|
|
|
+ segment = record.segment
|
|
|
if segment.answer:
|
|
|
document_context_list.append(
|
|
|
- f"question:{segment.get_sign_content()} answer:{segment.answer}"
|
|
|
+ DocumentContext(
|
|
|
+ content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
|
|
|
+ score=record.score,
|
|
|
+ )
|
|
|
)
|
|
|
else:
|
|
|
- document_context_list.append(segment.get_sign_content())
|
|
|
+ document_context_list.append(
|
|
|
+ DocumentContext(
|
|
|
+ content=segment.get_sign_content(),
|
|
|
+ score=record.score,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ retrieval_resource_list = []
|
|
|
if self.return_resource:
|
|
|
- context_list = []
|
|
|
- resource_number = 1
|
|
|
- for segment in sorted_segments:
|
|
|
- document_segment = Document.query.filter(
|
|
|
- Document.id == segment.document_id,
|
|
|
- Document.enabled == True,
|
|
|
- Document.archived == False,
|
|
|
+ for record in records:
|
|
|
+ segment = record.segment
|
|
|
+ dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
|
|
+ document = DatasetDocument.query.filter(
|
|
|
+ DatasetDocument.id == segment.document_id,
|
|
|
+ DatasetDocument.enabled == True,
|
|
|
+ DatasetDocument.archived == False,
|
|
|
).first()
|
|
|
- if not document_segment:
|
|
|
- continue
|
|
|
- if dataset and document_segment:
|
|
|
+ if dataset and document:
|
|
|
source = {
|
|
|
- "position": resource_number,
|
|
|
"dataset_id": dataset.id,
|
|
|
"dataset_name": dataset.name,
|
|
|
- "document_id": document_segment.id,
|
|
|
- "document_name": document_segment.name,
|
|
|
- "data_source_type": document_segment.data_source_type,
|
|
|
+ "document_id": document.id, # type: ignore
|
|
|
+ "document_name": document.name, # type: ignore
|
|
|
+ "data_source_type": document.data_source_type, # type: ignore
|
|
|
"segment_id": segment.id,
|
|
|
"retriever_from": self.retriever_from,
|
|
|
- "score": document_score_list.get(segment.index_node_id, None),
|
|
|
+ "score": record.score or 0.0,
|
|
|
}
|
|
|
+
|
|
|
if self.retriever_from == "dev":
|
|
|
source["hit_count"] = segment.hit_count
|
|
|
source["word_count"] = segment.word_count
|
|
@@ -187,10 +183,19 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|
|
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
|
|
else:
|
|
|
source["content"] = segment.content
|
|
|
- context_list.append(source)
|
|
|
- resource_number += 1
|
|
|
-
|
|
|
- for hit_callback in self.hit_callbacks:
|
|
|
- hit_callback.return_retriever_resource_info(context_list)
|
|
|
+ retrieval_resource_list.append(source)
|
|
|
|
|
|
- return str("\n".join(document_context_list))
|
|
|
+ if self.return_resource and retrieval_resource_list:
|
|
|
+ retrieval_resource_list = sorted(
|
|
|
+ retrieval_resource_list,
|
|
|
+ key=lambda x: x.get("score") or 0.0,
|
|
|
+ reverse=True,
|
|
|
+ )
|
|
|
+ for position, item in enumerate(retrieval_resource_list, start=1): # type: ignore
|
|
|
+ item["position"] = position # type: ignore
|
|
|
+ for hit_callback in self.hit_callbacks:
|
|
|
+ hit_callback.return_retriever_resource_info(retrieval_resource_list)
|
|
|
+ if document_context_list:
|
|
|
+ document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
|
|
|
+ return str("\n".join([document_context.content for document_context in document_context_list]))
|
|
|
+ return ""
|