|
@@ -12,6 +12,7 @@ from core.rag.datasource.entity.embedding import Embeddings
|
|
|
from extensions.ext_database import db
|
|
|
from extensions.ext_redis import redis_client
|
|
|
from libs import helper
|
|
|
+from models.dataset import Embedding
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
@@ -23,32 +24,55 @@ class CacheEmbedding(Embeddings):
|
|
|
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
|
"""Embed search docs in batches of 10."""
|
|
|
- text_embeddings = []
|
|
|
- try:
|
|
|
- model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
|
|
- model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
|
|
- max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
|
|
- if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
|
|
- for i in range(0, len(texts), max_chunks):
|
|
|
- batch_texts = texts[i:i + max_chunks]
|
|
|
-
|
|
|
- embedding_result = self._model_instance.invoke_text_embedding(
|
|
|
- texts=batch_texts,
|
|
|
- user=self._user
|
|
|
- )
|
|
|
-
|
|
|
- for vector in embedding_result.embeddings:
|
|
|
- try:
|
|
|
- normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
|
- text_embeddings.append(normalized_embedding)
|
|
|
- except IntegrityError:
|
|
|
- db.session.rollback()
|
|
|
- except Exception as e:
|
|
|
- logging.exception('Failed to add embedding to redis')
|
|
|
-
|
|
|
- except Exception as ex:
|
|
|
- logger.error('Failed to embed documents: ', ex)
|
|
|
- raise ex
|
|
|
+ # use doc embedding cache or store if not exists
|
|
|
+ text_embeddings = [None for _ in range(len(texts))]
|
|
|
+ embedding_queue_indices = []
|
|
|
+ for i, text in enumerate(texts):
|
|
|
+ hash = helper.generate_text_hash(text)
|
|
|
+ embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model,
|
|
|
+ hash=hash,
|
|
|
+ provider_name=self._model_instance.provider).first()
|
|
|
+ if embedding:
|
|
|
+ text_embeddings[i] = embedding.get_embedding()
|
|
|
+ else:
|
|
|
+ embedding_queue_indices.append(i)
|
|
|
+ if embedding_queue_indices:
|
|
|
+ embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
|
|
|
+ embedding_queue_embeddings = []
|
|
|
+ try:
|
|
|
+ model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
|
|
+ model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
|
|
+ max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
|
|
+ if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
|
|
+ for i in range(0, len(embedding_queue_texts), max_chunks):
|
|
|
+ batch_texts = embedding_queue_texts[i:i + max_chunks]
|
|
|
+
|
|
|
+ embedding_result = self._model_instance.invoke_text_embedding(
|
|
|
+ texts=batch_texts,
|
|
|
+ user=self._user
|
|
|
+ )
|
|
|
+
|
|
|
+ for vector in embedding_result.embeddings:
|
|
|
+ try:
|
|
|
+ normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
|
+ embedding_queue_embeddings.append(normalized_embedding)
|
|
|
+ except IntegrityError:
|
|
|
+ db.session.rollback()
|
|
|
+ except Exception as e:
|
|
|
+ logging.exception('Failed transform embedding: ', e)
|
|
|
+ for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
|
|
+ text_embeddings[i] = embedding
|
|
|
+ hash = helper.generate_text_hash(texts[i])
|
|
|
+ embedding_cache = Embedding(model_name=self._model_instance.model,
|
|
|
+ hash=hash,
|
|
|
+ provider_name=self._model_instance.provider)
|
|
|
+ embedding_cache.set_embedding(embedding)
|
|
|
+ db.session.add(embedding_cache)
|
|
|
+ db.session.commit()
|
|
|
+ except Exception as ex:
|
|
|
+ db.session.rollback()
|
|
|
+ logger.error('Failed to embed documents: ', ex)
|
|
|
+ raise ex
|
|
|
|
|
|
return text_embeddings
|
|
|
|
|
@@ -61,8 +85,6 @@ class CacheEmbedding(Embeddings):
|
|
|
if embedding:
|
|
|
redis_client.expire(embedding_cache_key, 600)
|
|
|
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
|
|
-
|
|
|
-
|
|
|
try:
|
|
|
embedding_result = self._model_instance.invoke_text_embedding(
|
|
|
texts=[text],
|