|
@@ -4,8 +4,8 @@ import json
|
|
|
|
|
|
import docx
|
|
|
import pandas as pd
|
|
|
-import pypdfium2
|
|
|
-import yaml
|
|
|
+import pypdfium2 # type: ignore
|
|
|
+import yaml # type: ignore
|
|
|
from unstructured.partition.api import partition_via_api
|
|
|
from unstructured.partition.email import partition_email
|
|
|
from unstructured.partition.epub import partition_epub
|
|
@@ -237,15 +237,17 @@ def _extract_text_from_csv(file_content: bytes) -> str:
|
|
|
|
|
|
def _extract_text_from_excel(file_content: bytes) -> str:
|
|
|
"""Extract text from an Excel file using pandas."""
|
|
|
-
|
|
|
try:
|
|
|
- df = pd.read_excel(io.BytesIO(file_content))
|
|
|
-
|
|
|
- # Drop rows where all elements are NaN
|
|
|
- df.dropna(how="all", inplace=True)
|
|
|
-
|
|
|
- # Convert DataFrame to Markdown table
|
|
|
- markdown_table = df.to_markdown(index=False)
|
|
|
+ excel_file = pd.ExcelFile(io.BytesIO(file_content))
|
|
|
+ markdown_table = ""
|
|
|
+ for sheet_name in excel_file.sheet_names:
|
|
|
+ try:
|
|
|
+ df = excel_file.parse(sheet_name=sheet_name)
|
|
|
+ df.dropna(how="all", inplace=True)
|
|
|
+ # Create Markdown table two times to separate tables with a newline
|
|
|
+ markdown_table += df.to_markdown(index=False) + "\n\n"
|
|
|
+ except Exception as e:
|
|
|
+ continue
|
|
|
return markdown_table
|
|
|
except Exception as e:
|
|
|
raise TextExtractionError(f"Failed to extract text from Excel file: {str(e)}") from e
|