|
@@ -370,29 +370,14 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
:return:md = genai.GenerativeModel(model)
|
|
|
"""
|
|
|
prefix = model.split('.')[0]
|
|
|
-
|
|
|
+ model_name = model.split('.')[1]
|
|
|
if isinstance(messages, str):
|
|
|
prompt = messages
|
|
|
else:
|
|
|
- prompt = self._convert_messages_to_prompt(messages, prefix)
|
|
|
+ prompt = self._convert_messages_to_prompt(messages, prefix, model_name)
|
|
|
|
|
|
return self._get_num_tokens_by_gpt2(prompt)
|
|
|
|
|
|
- def _convert_messages_to_prompt(self, model_prefix: str, messages: list[PromptMessage]) -> str:
|
|
|
- """
|
|
|
- Format a list of messages into a full prompt for the Google model
|
|
|
-
|
|
|
- :param messages: List of PromptMessage to combine.
|
|
|
- :return: Combined string with necessary human_prompt and ai_prompt tags.
|
|
|
- """
|
|
|
- messages = messages.copy() # don't mutate the original list
|
|
|
-
|
|
|
- text = "".join(
|
|
|
- self._convert_one_message_to_text(message, model_prefix)
|
|
|
- for message in messages
|
|
|
- )
|
|
|
-
|
|
|
- return text.rstrip()
|
|
|
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
"""
|
|
@@ -432,7 +417,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
except Exception as ex:
|
|
|
raise CredentialsValidateFailedError(str(ex))
|
|
|
|
|
|
- def _convert_one_message_to_text(self, message: PromptMessage, model_prefix: str) -> str:
|
|
|
+ def _convert_one_message_to_text(self, message: PromptMessage, model_prefix: str, model_name: Optional[str] = None) -> str:
|
|
|
"""
|
|
|
Convert a single message to a string.
|
|
|
|
|
@@ -446,10 +431,17 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
ai_prompt = "\n\nAssistant:"
|
|
|
|
|
|
elif model_prefix == "meta":
|
|
|
- human_prompt_prefix = "\n[INST]"
|
|
|
- human_prompt_postfix = "[\\INST]\n"
|
|
|
- ai_prompt = ""
|
|
|
-
|
|
|
+ # LLAMA3
|
|
|
+ if model_name.startswith("llama3"):
|
|
|
+ human_prompt_prefix = "<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
|
|
+ human_prompt_postfix = "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
|
+ ai_prompt = "\n\nAssistant:"
|
|
|
+ else:
|
|
|
+ # LLAMA2
|
|
|
+ human_prompt_prefix = "\n[INST]"
|
|
|
+ human_prompt_postfix = "[\\INST]\n"
|
|
|
+ ai_prompt = ""
|
|
|
+
|
|
|
elif model_prefix == "mistral":
|
|
|
human_prompt_prefix = "<s>[INST]"
|
|
|
human_prompt_postfix = "[\\INST]\n"
|
|
@@ -478,11 +470,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
|
return message_text
|
|
|
|
|
|
- def _convert_messages_to_prompt(self, messages: list[PromptMessage], model_prefix: str) -> str:
|
|
|
+ def _convert_messages_to_prompt(self, messages: list[PromptMessage], model_prefix: str, model_name: Optional[str] = None) -> str:
|
|
|
"""
|
|
|
Format a list of messages into a full prompt for the Anthropic, Amazon and Llama models
|
|
|
|
|
|
:param messages: List of PromptMessage to combine.
|
|
|
+ :param model_name: specific model name.Optional,just to distinguish llama2 and llama3
|
|
|
:return: Combined string with necessary human_prompt and ai_prompt tags.
|
|
|
"""
|
|
|
if not messages:
|
|
@@ -493,18 +486,20 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
messages.append(AssistantPromptMessage(content=""))
|
|
|
|
|
|
text = "".join(
|
|
|
- self._convert_one_message_to_text(message, model_prefix)
|
|
|
+ self._convert_one_message_to_text(message, model_prefix, model_name)
|
|
|
for message in messages
|
|
|
)
|
|
|
|
|
|
# trim off the trailing ' ' that might come from the "Assistant: "
|
|
|
return text.rstrip()
|
|
|
|
|
|
- def _create_payload(self, model_prefix: str, prompt_messages: list[PromptMessage], model_parameters: dict, stop: Optional[list[str]] = None, stream: bool = True):
|
|
|
+ def _create_payload(self, model: str, prompt_messages: list[PromptMessage], model_parameters: dict, stop: Optional[list[str]] = None, stream: bool = True):
|
|
|
"""
|
|
|
Create payload for bedrock api call depending on model provider
|
|
|
"""
|
|
|
payload = dict()
|
|
|
+ model_prefix = model.split('.')[0]
|
|
|
+ model_name = model.split('.')[1]
|
|
|
|
|
|
if model_prefix == "amazon":
|
|
|
payload["textGenerationConfig"] = { **model_parameters }
|
|
@@ -544,7 +539,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
|
elif model_prefix == "meta":
|
|
|
payload = { **model_parameters }
|
|
|
- payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
|
|
|
+ payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix, model_name)
|
|
|
|
|
|
else:
|
|
|
raise ValueError(f"Got unknown model prefix {model_prefix}")
|
|
@@ -579,7 +574,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
)
|
|
|
|
|
|
model_prefix = model.split('.')[0]
|
|
|
- payload = self._create_payload(model_prefix, prompt_messages, model_parameters, stop, stream)
|
|
|
+ payload = self._create_payload(model, prompt_messages, model_parameters, stop, stream)
|
|
|
|
|
|
# need workaround for ai21 models which doesn't support streaming
|
|
|
if stream and model_prefix != "ai21":
|