|
@@ -2,7 +2,7 @@ import logging
|
|
|
|
|
|
from langchain import PromptTemplate
|
|
|
from langchain.chat_models.base import BaseChatModel
|
|
|
-from langchain.schema import HumanMessage, OutputParserException
|
|
|
+from langchain.schema import HumanMessage, OutputParserException, BaseMessage
|
|
|
|
|
|
from core.constant import llm_constant
|
|
|
from core.llm.llm_builder import LLMBuilder
|
|
@@ -23,10 +23,10 @@ class LLMGenerator:
|
|
|
@classmethod
|
|
|
def generate_conversation_name(cls, tenant_id: str, query, answer):
|
|
|
prompt = CONVERSATION_TITLE_PROMPT
|
|
|
- prompt = prompt.format(query=query, answer=answer)
|
|
|
+ prompt = prompt.format(query=query)
|
|
|
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
|
|
tenant_id=tenant_id,
|
|
|
- model_name=generate_base_model,
|
|
|
+ model_name='gpt-3.5-turbo',
|
|
|
max_tokens=50
|
|
|
)
|
|
|
|
|
@@ -40,11 +40,12 @@ class LLMGenerator:
|
|
|
@classmethod
|
|
|
def generate_conversation_summary(cls, tenant_id: str, messages):
|
|
|
max_tokens = 200
|
|
|
+ model = 'gpt-3.5-turbo'
|
|
|
|
|
|
prompt = CONVERSATION_SUMMARY_PROMPT
|
|
|
prompt_with_empty_context = prompt.format(context='')
|
|
|
- prompt_tokens = TokenCalculator.get_num_tokens(generate_base_model, prompt_with_empty_context)
|
|
|
- rest_tokens = llm_constant.max_context_token_length[generate_base_model] - prompt_tokens - max_tokens
|
|
|
+ prompt_tokens = TokenCalculator.get_num_tokens(model, prompt_with_empty_context)
|
|
|
+ rest_tokens = llm_constant.max_context_token_length[model] - prompt_tokens - max_tokens
|
|
|
|
|
|
context = ''
|
|
|
for message in messages:
|
|
@@ -52,14 +53,14 @@ class LLMGenerator:
|
|
|
continue
|
|
|
|
|
|
message_qa_text = "Human:" + message.query + "\nAI:" + message.answer + "\n"
|
|
|
- if rest_tokens - TokenCalculator.get_num_tokens(generate_base_model, context + message_qa_text) > 0:
|
|
|
+ if rest_tokens - TokenCalculator.get_num_tokens(model, context + message_qa_text) > 0:
|
|
|
context += message_qa_text
|
|
|
|
|
|
prompt = prompt.format(context=context)
|
|
|
|
|
|
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
|
|
tenant_id=tenant_id,
|
|
|
- model_name=generate_base_model,
|
|
|
+ model_name=model,
|
|
|
max_tokens=max_tokens
|
|
|
)
|
|
|
|
|
@@ -102,7 +103,7 @@ class LLMGenerator:
|
|
|
|
|
|
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
|
|
tenant_id=tenant_id,
|
|
|
- model_name=generate_base_model,
|
|
|
+ model_name='gpt-3.5-turbo',
|
|
|
temperature=0,
|
|
|
max_tokens=256
|
|
|
)
|
|
@@ -114,6 +115,8 @@ class LLMGenerator:
|
|
|
|
|
|
try:
|
|
|
output = llm(query)
|
|
|
+ if isinstance(output, BaseMessage):
|
|
|
+ output = output.content
|
|
|
questions = output_parser.parse(output)
|
|
|
except Exception:
|
|
|
logging.exception("Error generating suggested questions after answer")
|