|
@@ -1,35 +1,34 @@
|
|
|
import datetime
|
|
|
import json
|
|
|
+import logging
|
|
|
import re
|
|
|
-import tempfile
|
|
|
import time
|
|
|
-from pathlib import Path
|
|
|
-from typing import Optional, List
|
|
|
+import uuid
|
|
|
+from typing import Optional, List, cast
|
|
|
|
|
|
+from flask import current_app
|
|
|
from flask_login import current_user
|
|
|
-from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
+from langchain.embeddings import OpenAIEmbeddings
|
|
|
+from langchain.schema import Document
|
|
|
+from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
|
|
|
|
|
-from llama_index import SimpleDirectoryReader
|
|
|
-from llama_index.data_structs import Node
|
|
|
-from llama_index.data_structs.node_v2 import DocumentRelationship
|
|
|
-from llama_index.node_parser import SimpleNodeParser, NodeParser
|
|
|
-from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
|
|
|
-from llama_index.readers.file.markdown_parser import MarkdownParser
|
|
|
-
|
|
|
-from core.data_source.notion import NotionPageReader
|
|
|
-from core.index.readers.xlsx_parser import XLSXParser
|
|
|
+from core.data_loader.file_extractor import FileExtractor
|
|
|
+from core.data_loader.loader.notion import NotionLoader
|
|
|
from core.docstore.dataset_docstore import DatesetDocumentStore
|
|
|
-from core.index.keyword_table_index import KeywordTableIndex
|
|
|
-from core.index.readers.html_parser import HTMLParser
|
|
|
-from core.index.readers.markdown_parser import MarkdownParser
|
|
|
-from core.index.readers.pdf_parser import PDFParser
|
|
|
-from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
|
|
-from core.index.vector_index import VectorIndex
|
|
|
+from core.embedding.cached_embedding import CacheEmbedding
|
|
|
+from core.index.index import IndexBuilder
|
|
|
+from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
|
|
+from core.index.vector_index.vector_index import VectorIndex
|
|
|
+from core.llm.error import ProviderTokenNotInitError
|
|
|
+from core.llm.llm_builder import LLMBuilder
|
|
|
+from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
|
|
from core.llm.token_calculator import TokenCalculator
|
|
|
from extensions.ext_database import db
|
|
|
from extensions.ext_redis import redis_client
|
|
|
from extensions.ext_storage import storage
|
|
|
-from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
|
|
|
+from libs import helper
|
|
|
+from models.dataset import Document as DatasetDocument
|
|
|
+from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
|
|
|
from models.model import UploadFile
|
|
|
from models.source import DataSourceBinding
|
|
|
|
|
@@ -40,135 +39,171 @@ class IndexingRunner:
|
|
|
self.storage = storage
|
|
|
self.embedding_model_name = embedding_model_name
|
|
|
|
|
|
- def run(self, documents: List[Document]):
|
|
|
+ def run(self, dataset_documents: List[DatasetDocument]):
|
|
|
"""Run the indexing process."""
|
|
|
- for document in documents:
|
|
|
+ for dataset_document in dataset_documents:
|
|
|
+ try:
|
|
|
+ # get dataset
|
|
|
+ dataset = Dataset.query.filter_by(
|
|
|
+ id=dataset_document.dataset_id
|
|
|
+ ).first()
|
|
|
+
|
|
|
+ if not dataset:
|
|
|
+ raise ValueError("no dataset found")
|
|
|
+
|
|
|
+ # load file
|
|
|
+ text_docs = self._load_data(dataset_document)
|
|
|
+
|
|
|
+ # get the process rule
|
|
|
+ processing_rule = db.session.query(DatasetProcessRule). \
|
|
|
+ filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
|
|
+ first()
|
|
|
+
|
|
|
+ # get splitter
|
|
|
+ splitter = self._get_splitter(processing_rule)
|
|
|
+
|
|
|
+ # split to documents
|
|
|
+ documents = self._step_split(
|
|
|
+ text_docs=text_docs,
|
|
|
+ splitter=splitter,
|
|
|
+ dataset=dataset,
|
|
|
+ dataset_document=dataset_document,
|
|
|
+ processing_rule=processing_rule
|
|
|
+ )
|
|
|
+
|
|
|
+ # build index
|
|
|
+ self._build_index(
|
|
|
+ dataset=dataset,
|
|
|
+ dataset_document=dataset_document,
|
|
|
+ documents=documents
|
|
|
+ )
|
|
|
+ except DocumentIsPausedException:
|
|
|
+ raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
|
+ except ProviderTokenNotInitError as e:
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e.description)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
+ except Exception as e:
|
|
|
+ logging.exception("consume document failed")
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
+
|
|
|
+ def run_in_splitting_status(self, dataset_document: DatasetDocument):
|
|
|
+ """Run the indexing process when the index_status is splitting."""
|
|
|
+ try:
|
|
|
# get dataset
|
|
|
dataset = Dataset.query.filter_by(
|
|
|
- id=document.dataset_id
|
|
|
+ id=dataset_document.dataset_id
|
|
|
).first()
|
|
|
|
|
|
if not dataset:
|
|
|
raise ValueError("no dataset found")
|
|
|
|
|
|
+ # get exist document_segment list and delete
|
|
|
+ document_segments = DocumentSegment.query.filter_by(
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ document_id=dataset_document.id
|
|
|
+ ).all()
|
|
|
+
|
|
|
+ db.session.delete(document_segments)
|
|
|
+ db.session.commit()
|
|
|
+
|
|
|
# load file
|
|
|
- text_docs = self._load_data(document)
|
|
|
+ text_docs = self._load_data(dataset_document)
|
|
|
|
|
|
# get the process rule
|
|
|
processing_rule = db.session.query(DatasetProcessRule). \
|
|
|
- filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
|
|
|
+ filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
|
|
first()
|
|
|
|
|
|
- # get node parser for splitting
|
|
|
- node_parser = self._get_node_parser(processing_rule)
|
|
|
+ # get splitter
|
|
|
+ splitter = self._get_splitter(processing_rule)
|
|
|
|
|
|
- # split to nodes
|
|
|
- nodes = self._step_split(
|
|
|
+ # split to documents
|
|
|
+ documents = self._step_split(
|
|
|
text_docs=text_docs,
|
|
|
- node_parser=node_parser,
|
|
|
+ splitter=splitter,
|
|
|
dataset=dataset,
|
|
|
- document=document,
|
|
|
+ dataset_document=dataset_document,
|
|
|
processing_rule=processing_rule
|
|
|
)
|
|
|
|
|
|
# build index
|
|
|
self._build_index(
|
|
|
dataset=dataset,
|
|
|
- document=document,
|
|
|
- nodes=nodes
|
|
|
+ dataset_document=dataset_document,
|
|
|
+ documents=documents
|
|
|
)
|
|
|
+ except DocumentIsPausedException:
|
|
|
+ raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
|
+ except ProviderTokenNotInitError as e:
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e.description)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
+ except Exception as e:
|
|
|
+ logging.exception("consume document failed")
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
|
|
|
- def run_in_splitting_status(self, document: Document):
|
|
|
- """Run the indexing process when the index_status is splitting."""
|
|
|
- # get dataset
|
|
|
- dataset = Dataset.query.filter_by(
|
|
|
- id=document.dataset_id
|
|
|
- ).first()
|
|
|
-
|
|
|
- if not dataset:
|
|
|
- raise ValueError("no dataset found")
|
|
|
-
|
|
|
- # get exist document_segment list and delete
|
|
|
- document_segments = DocumentSegment.query.filter_by(
|
|
|
- dataset_id=dataset.id,
|
|
|
- document_id=document.id
|
|
|
- ).all()
|
|
|
- db.session.delete(document_segments)
|
|
|
- db.session.commit()
|
|
|
- # load file
|
|
|
- text_docs = self._load_data(document)
|
|
|
-
|
|
|
- # get the process rule
|
|
|
- processing_rule = db.session.query(DatasetProcessRule). \
|
|
|
- filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
|
|
|
- first()
|
|
|
-
|
|
|
- # get node parser for splitting
|
|
|
- node_parser = self._get_node_parser(processing_rule)
|
|
|
+ def run_in_indexing_status(self, dataset_document: DatasetDocument):
|
|
|
+ """Run the indexing process when the index_status is indexing."""
|
|
|
+ try:
|
|
|
+ # get dataset
|
|
|
+ dataset = Dataset.query.filter_by(
|
|
|
+ id=dataset_document.dataset_id
|
|
|
+ ).first()
|
|
|
|
|
|
- # split to nodes
|
|
|
- nodes = self._step_split(
|
|
|
- text_docs=text_docs,
|
|
|
- node_parser=node_parser,
|
|
|
- dataset=dataset,
|
|
|
- document=document,
|
|
|
- processing_rule=processing_rule
|
|
|
- )
|
|
|
+ if not dataset:
|
|
|
+ raise ValueError("no dataset found")
|
|
|
|
|
|
- # build index
|
|
|
- self._build_index(
|
|
|
- dataset=dataset,
|
|
|
- document=document,
|
|
|
- nodes=nodes
|
|
|
- )
|
|
|
+ # get exist document_segment list and delete
|
|
|
+ document_segments = DocumentSegment.query.filter_by(
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ document_id=dataset_document.id
|
|
|
+ ).all()
|
|
|
+
|
|
|
+ documents = []
|
|
|
+ if document_segments:
|
|
|
+ for document_segment in document_segments:
|
|
|
+ # transform segment to node
|
|
|
+ if document_segment.status != "completed":
|
|
|
+ document = Document(
|
|
|
+ page_content=document_segment.content,
|
|
|
+ metadata={
|
|
|
+ "doc_id": document_segment.index_node_id,
|
|
|
+ "doc_hash": document_segment.index_node_hash,
|
|
|
+ "document_id": document_segment.document_id,
|
|
|
+ "dataset_id": document_segment.dataset_id,
|
|
|
+ }
|
|
|
+ )
|
|
|
+
|
|
|
+ documents.append(document)
|
|
|
|
|
|
- def run_in_indexing_status(self, document: Document):
|
|
|
- """Run the indexing process when the index_status is indexing."""
|
|
|
- # get dataset
|
|
|
- dataset = Dataset.query.filter_by(
|
|
|
- id=document.dataset_id
|
|
|
- ).first()
|
|
|
-
|
|
|
- if not dataset:
|
|
|
- raise ValueError("no dataset found")
|
|
|
-
|
|
|
- # get exist document_segment list and delete
|
|
|
- document_segments = DocumentSegment.query.filter_by(
|
|
|
- dataset_id=dataset.id,
|
|
|
- document_id=document.id
|
|
|
- ).all()
|
|
|
- nodes = []
|
|
|
- if document_segments:
|
|
|
- for document_segment in document_segments:
|
|
|
- # transform segment to node
|
|
|
- if document_segment.status != "completed":
|
|
|
- relationships = {
|
|
|
- DocumentRelationship.SOURCE: document_segment.document_id,
|
|
|
- }
|
|
|
-
|
|
|
- previous_segment = document_segment.previous_segment
|
|
|
- if previous_segment:
|
|
|
- relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
|
|
|
-
|
|
|
- next_segment = document_segment.next_segment
|
|
|
- if next_segment:
|
|
|
- relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
|
|
|
- node = Node(
|
|
|
- doc_id=document_segment.index_node_id,
|
|
|
- doc_hash=document_segment.index_node_hash,
|
|
|
- text=document_segment.content,
|
|
|
- extra_info=None,
|
|
|
- node_info=None,
|
|
|
- relationships=relationships
|
|
|
- )
|
|
|
- nodes.append(node)
|
|
|
-
|
|
|
- # build index
|
|
|
- self._build_index(
|
|
|
- dataset=dataset,
|
|
|
- document=document,
|
|
|
- nodes=nodes
|
|
|
- )
|
|
|
+ # build index
|
|
|
+ self._build_index(
|
|
|
+ dataset=dataset,
|
|
|
+ dataset_document=dataset_document,
|
|
|
+ documents=documents
|
|
|
+ )
|
|
|
+ except DocumentIsPausedException:
|
|
|
+ raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
|
+ except ProviderTokenNotInitError as e:
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e.description)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
+ except Exception as e:
|
|
|
+ logging.exception("consume document failed")
|
|
|
+ dataset_document.indexing_status = 'error'
|
|
|
+ dataset_document.error = str(e)
|
|
|
+ dataset_document.stopped_at = datetime.datetime.utcnow()
|
|
|
+ db.session.commit()
|
|
|
|
|
|
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
|
|
|
"""
|
|
@@ -179,28 +214,28 @@ class IndexingRunner:
|
|
|
total_segments = 0
|
|
|
for file_detail in file_details:
|
|
|
# load data from file
|
|
|
- text_docs = self._load_data_from_file(file_detail)
|
|
|
+ text_docs = FileExtractor.load(file_detail)
|
|
|
|
|
|
processing_rule = DatasetProcessRule(
|
|
|
mode=tmp_processing_rule["mode"],
|
|
|
rules=json.dumps(tmp_processing_rule["rules"])
|
|
|
)
|
|
|
|
|
|
- # get node parser for splitting
|
|
|
- node_parser = self._get_node_parser(processing_rule)
|
|
|
+ # get splitter
|
|
|
+ splitter = self._get_splitter(processing_rule)
|
|
|
|
|
|
- # split to nodes
|
|
|
- nodes = self._split_to_nodes(
|
|
|
+ # split to documents
|
|
|
+ documents = self._split_to_documents(
|
|
|
text_docs=text_docs,
|
|
|
- node_parser=node_parser,
|
|
|
+ splitter=splitter,
|
|
|
processing_rule=processing_rule
|
|
|
)
|
|
|
- total_segments += len(nodes)
|
|
|
- for node in nodes:
|
|
|
+ total_segments += len(documents)
|
|
|
+ for document in documents:
|
|
|
if len(preview_texts) < 5:
|
|
|
- preview_texts.append(node.get_text())
|
|
|
+ preview_texts.append(document.page_content)
|
|
|
|
|
|
- tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
|
|
|
+ tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
|
|
|
|
|
return {
|
|
|
"total_segments": total_segments,
|
|
@@ -230,35 +265,36 @@ class IndexingRunner:
|
|
|
).first()
|
|
|
if not data_source_binding:
|
|
|
raise ValueError('Data source binding not found.')
|
|
|
- reader = NotionPageReader(integration_token=data_source_binding.access_token)
|
|
|
+
|
|
|
for page in notion_info['pages']:
|
|
|
- if page['type'] == 'page':
|
|
|
- page_ids = [page['page_id']]
|
|
|
- documents = reader.load_data_as_documents(page_ids=page_ids)
|
|
|
- elif page['type'] == 'database':
|
|
|
- documents = reader.load_data_as_documents(database_id=page['page_id'])
|
|
|
- else:
|
|
|
- documents = []
|
|
|
+ loader = NotionLoader(
|
|
|
+ notion_access_token=data_source_binding.access_token,
|
|
|
+ notion_workspace_id=workspace_id,
|
|
|
+ notion_obj_id=page['page_id'],
|
|
|
+ notion_page_type=page['type']
|
|
|
+ )
|
|
|
+ documents = loader.load()
|
|
|
+
|
|
|
processing_rule = DatasetProcessRule(
|
|
|
mode=tmp_processing_rule["mode"],
|
|
|
rules=json.dumps(tmp_processing_rule["rules"])
|
|
|
)
|
|
|
|
|
|
- # get node parser for splitting
|
|
|
- node_parser = self._get_node_parser(processing_rule)
|
|
|
+ # get splitter
|
|
|
+ splitter = self._get_splitter(processing_rule)
|
|
|
|
|
|
- # split to nodes
|
|
|
- nodes = self._split_to_nodes(
|
|
|
+ # split to documents
|
|
|
+ documents = self._split_to_documents(
|
|
|
text_docs=documents,
|
|
|
- node_parser=node_parser,
|
|
|
+ splitter=splitter,
|
|
|
processing_rule=processing_rule
|
|
|
)
|
|
|
- total_segments += len(nodes)
|
|
|
- for node in nodes:
|
|
|
+ total_segments += len(documents)
|
|
|
+ for document in documents:
|
|
|
if len(preview_texts) < 5:
|
|
|
- preview_texts.append(node.get_text())
|
|
|
+ preview_texts.append(document.page_content)
|
|
|
|
|
|
- tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
|
|
|
+ tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
|
|
|
|
|
return {
|
|
|
"total_segments": total_segments,
|
|
@@ -268,14 +304,14 @@ class IndexingRunner:
|
|
|
"preview": preview_texts
|
|
|
}
|
|
|
|
|
|
- def _load_data(self, document: Document) -> List[Document]:
|
|
|
+ def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
|
|
|
# load file
|
|
|
- if document.data_source_type not in ["upload_file", "notion_import"]:
|
|
|
+ if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
|
|
|
return []
|
|
|
|
|
|
- data_source_info = document.data_source_info_dict
|
|
|
+ data_source_info = dataset_document.data_source_info_dict
|
|
|
text_docs = []
|
|
|
- if document.data_source_type == 'upload_file':
|
|
|
+ if dataset_document.data_source_type == 'upload_file':
|
|
|
if not data_source_info or 'upload_file_id' not in data_source_info:
|
|
|
raise ValueError("no upload file found")
|
|
|
|
|
@@ -283,47 +319,28 @@ class IndexingRunner:
|
|
|
filter(UploadFile.id == data_source_info['upload_file_id']). \
|
|
|
one_or_none()
|
|
|
|
|
|
- text_docs = self._load_data_from_file(file_detail)
|
|
|
- elif document.data_source_type == 'notion_import':
|
|
|
- if not data_source_info or 'notion_page_id' not in data_source_info \
|
|
|
- or 'notion_workspace_id' not in data_source_info:
|
|
|
- raise ValueError("no notion page found")
|
|
|
- workspace_id = data_source_info['notion_workspace_id']
|
|
|
- page_id = data_source_info['notion_page_id']
|
|
|
- page_type = data_source_info['type']
|
|
|
- data_source_binding = DataSourceBinding.query.filter(
|
|
|
- db.and_(
|
|
|
- DataSourceBinding.tenant_id == document.tenant_id,
|
|
|
- DataSourceBinding.provider == 'notion',
|
|
|
- DataSourceBinding.disabled == False,
|
|
|
- DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
|
|
|
- )
|
|
|
- ).first()
|
|
|
- if not data_source_binding:
|
|
|
- raise ValueError('Data source binding not found.')
|
|
|
- if page_type == 'page':
|
|
|
- # add page last_edited_time to data_source_info
|
|
|
- self._get_notion_page_last_edited_time(page_id, data_source_binding.access_token, document)
|
|
|
- text_docs = self._load_page_data_from_notion(page_id, data_source_binding.access_token)
|
|
|
- elif page_type == 'database':
|
|
|
- # add page last_edited_time to data_source_info
|
|
|
- self._get_notion_database_last_edited_time(page_id, data_source_binding.access_token, document)
|
|
|
- text_docs = self._load_database_data_from_notion(page_id, data_source_binding.access_token)
|
|
|
+ text_docs = FileExtractor.load(file_detail)
|
|
|
+ elif dataset_document.data_source_type == 'notion_import':
|
|
|
+ loader = NotionLoader.from_document(dataset_document)
|
|
|
+ text_docs = loader.load()
|
|
|
+
|
|
|
# update document status to splitting
|
|
|
self._update_document_index_status(
|
|
|
- document_id=document.id,
|
|
|
+ document_id=dataset_document.id,
|
|
|
after_indexing_status="splitting",
|
|
|
extra_update_params={
|
|
|
- Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
|
|
|
- Document.parsing_completed_at: datetime.datetime.utcnow()
|
|
|
+ DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
|
|
|
+ DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
|
|
|
}
|
|
|
)
|
|
|
|
|
|
# replace doc id to document model id
|
|
|
+ text_docs = cast(List[Document], text_docs)
|
|
|
for text_doc in text_docs:
|
|
|
# remove invalid symbol
|
|
|
- text_doc.text = self.filter_string(text_doc.get_text())
|
|
|
- text_doc.doc_id = document.id
|
|
|
+ text_doc.page_content = self.filter_string(text_doc.page_content)
|
|
|
+ text_doc.metadata['document_id'] = dataset_document.id
|
|
|
+ text_doc.metadata['dataset_id'] = dataset_document.dataset_id
|
|
|
|
|
|
return text_docs
|
|
|
|
|
@@ -331,61 +348,7 @@ class IndexingRunner:
|
|
|
pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
|
|
|
return pattern.sub('', text)
|
|
|
|
|
|
- def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
|
|
|
- with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
- suffix = Path(upload_file.key).suffix
|
|
|
- filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
|
|
|
- self.storage.download(upload_file.key, filepath)
|
|
|
-
|
|
|
- file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
|
|
|
- file_extractor[".markdown"] = MarkdownParser()
|
|
|
- file_extractor[".md"] = MarkdownParser()
|
|
|
- file_extractor[".html"] = HTMLParser()
|
|
|
- file_extractor[".htm"] = HTMLParser()
|
|
|
- file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
|
|
|
- file_extractor[".xlsx"] = XLSXParser()
|
|
|
-
|
|
|
- loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
|
|
|
- text_docs = loader.load_data()
|
|
|
-
|
|
|
- return text_docs
|
|
|
-
|
|
|
- def _load_page_data_from_notion(self, page_id: str, access_token: str) -> List[Document]:
|
|
|
- page_ids = [page_id]
|
|
|
- reader = NotionPageReader(integration_token=access_token)
|
|
|
- text_docs = reader.load_data_as_documents(page_ids=page_ids)
|
|
|
- return text_docs
|
|
|
-
|
|
|
- def _load_database_data_from_notion(self, database_id: str, access_token: str) -> List[Document]:
|
|
|
- reader = NotionPageReader(integration_token=access_token)
|
|
|
- text_docs = reader.load_data_as_documents(database_id=database_id)
|
|
|
- return text_docs
|
|
|
-
|
|
|
- def _get_notion_page_last_edited_time(self, page_id: str, access_token: str, document: Document):
|
|
|
- reader = NotionPageReader(integration_token=access_token)
|
|
|
- last_edited_time = reader.get_page_last_edited_time(page_id)
|
|
|
- data_source_info = document.data_source_info_dict
|
|
|
- data_source_info['last_edited_time'] = last_edited_time
|
|
|
- update_params = {
|
|
|
- Document.data_source_info: json.dumps(data_source_info)
|
|
|
- }
|
|
|
-
|
|
|
- Document.query.filter_by(id=document.id).update(update_params)
|
|
|
- db.session.commit()
|
|
|
-
|
|
|
- def _get_notion_database_last_edited_time(self, page_id: str, access_token: str, document: Document):
|
|
|
- reader = NotionPageReader(integration_token=access_token)
|
|
|
- last_edited_time = reader.get_database_last_edited_time(page_id)
|
|
|
- data_source_info = document.data_source_info_dict
|
|
|
- data_source_info['last_edited_time'] = last_edited_time
|
|
|
- update_params = {
|
|
|
- Document.data_source_info: json.dumps(data_source_info)
|
|
|
- }
|
|
|
-
|
|
|
- Document.query.filter_by(id=document.id).update(update_params)
|
|
|
- db.session.commit()
|
|
|
-
|
|
|
- def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
|
|
|
+ def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
|
|
|
"""
|
|
|
Get the NodeParser object according to the processing rule.
|
|
|
"""
|
|
@@ -414,68 +377,83 @@ class IndexingRunner:
|
|
|
separators=["\n\n", "。", ".", " ", ""]
|
|
|
)
|
|
|
|
|
|
- return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
|
|
|
+ return character_splitter
|
|
|
|
|
|
- def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
|
|
|
- dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
|
|
|
+ def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
|
|
|
+ dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
|
|
|
+ -> List[Document]:
|
|
|
"""
|
|
|
- Split the text documents into nodes and save them to the document segment.
|
|
|
+ Split the text documents into documents and save them to the document segment.
|
|
|
"""
|
|
|
- nodes = self._split_to_nodes(
|
|
|
+ documents = self._split_to_documents(
|
|
|
text_docs=text_docs,
|
|
|
- node_parser=node_parser,
|
|
|
+ splitter=splitter,
|
|
|
processing_rule=processing_rule
|
|
|
)
|
|
|
|
|
|
# save node to document segment
|
|
|
doc_store = DatesetDocumentStore(
|
|
|
dataset=dataset,
|
|
|
- user_id=document.created_by,
|
|
|
+ user_id=dataset_document.created_by,
|
|
|
embedding_model_name=self.embedding_model_name,
|
|
|
- document_id=document.id
|
|
|
+ document_id=dataset_document.id
|
|
|
)
|
|
|
+
|
|
|
# add document segments
|
|
|
- doc_store.add_documents(nodes)
|
|
|
+ doc_store.add_documents(documents)
|
|
|
|
|
|
# update document status to indexing
|
|
|
cur_time = datetime.datetime.utcnow()
|
|
|
self._update_document_index_status(
|
|
|
- document_id=document.id,
|
|
|
+ document_id=dataset_document.id,
|
|
|
after_indexing_status="indexing",
|
|
|
extra_update_params={
|
|
|
- Document.cleaning_completed_at: cur_time,
|
|
|
- Document.splitting_completed_at: cur_time,
|
|
|
+ DatasetDocument.cleaning_completed_at: cur_time,
|
|
|
+ DatasetDocument.splitting_completed_at: cur_time,
|
|
|
}
|
|
|
)
|
|
|
|
|
|
# update segment status to indexing
|
|
|
self._update_segments_by_document(
|
|
|
- document_id=document.id,
|
|
|
+ dataset_document_id=dataset_document.id,
|
|
|
update_params={
|
|
|
DocumentSegment.status: "indexing",
|
|
|
DocumentSegment.indexing_at: datetime.datetime.utcnow()
|
|
|
}
|
|
|
)
|
|
|
|
|
|
- return nodes
|
|
|
+ return documents
|
|
|
|
|
|
- def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
|
|
|
- processing_rule: DatasetProcessRule) -> List[Node]:
|
|
|
+ def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
|
|
|
+ processing_rule: DatasetProcessRule) -> List[Document]:
|
|
|
"""
|
|
|
Split the text documents into nodes.
|
|
|
"""
|
|
|
- all_nodes = []
|
|
|
+ all_documents = []
|
|
|
for text_doc in text_docs:
|
|
|
# document clean
|
|
|
- document_text = self._document_clean(text_doc.get_text(), processing_rule)
|
|
|
- text_doc.text = document_text
|
|
|
+ document_text = self._document_clean(text_doc.page_content, processing_rule)
|
|
|
+ text_doc.page_content = document_text
|
|
|
|
|
|
# parse document to nodes
|
|
|
- nodes = node_parser.get_nodes_from_documents([text_doc])
|
|
|
- nodes = [node for node in nodes if node.text is not None and node.text.strip()]
|
|
|
- all_nodes.extend(nodes)
|
|
|
+ documents = splitter.split_documents([text_doc])
|
|
|
+
|
|
|
+ split_documents = []
|
|
|
+ for document in documents:
|
|
|
+ if document.page_content is None or not document.page_content.strip():
|
|
|
+ continue
|
|
|
+
|
|
|
+ doc_id = str(uuid.uuid4())
|
|
|
+ hash = helper.generate_text_hash(document.page_content)
|
|
|
+
|
|
|
+ document.metadata['doc_id'] = doc_id
|
|
|
+ document.metadata['doc_hash'] = hash
|
|
|
+
|
|
|
+ split_documents.append(document)
|
|
|
+
|
|
|
+ all_documents.extend(split_documents)
|
|
|
|
|
|
- return all_nodes
|
|
|
+ return all_documents
|
|
|
|
|
|
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
|
|
|
"""
|
|
@@ -506,37 +484,38 @@ class IndexingRunner:
|
|
|
|
|
|
return text
|
|
|
|
|
|
- def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
|
|
|
+ def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
|
|
|
"""
|
|
|
Build the index for the document.
|
|
|
"""
|
|
|
- vector_index = VectorIndex(dataset=dataset)
|
|
|
- keyword_table_index = KeywordTableIndex(dataset=dataset)
|
|
|
+ vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
|
|
+ keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
|
|
|
|
|
|
# chunk nodes by chunk size
|
|
|
indexing_start_at = time.perf_counter()
|
|
|
tokens = 0
|
|
|
chunk_size = 100
|
|
|
- for i in range(0, len(nodes), chunk_size):
|
|
|
+ for i in range(0, len(documents), chunk_size):
|
|
|
# check document is paused
|
|
|
- self._check_document_paused_status(document.id)
|
|
|
- chunk_nodes = nodes[i:i + chunk_size]
|
|
|
+ self._check_document_paused_status(dataset_document.id)
|
|
|
+ chunk_documents = documents[i:i + chunk_size]
|
|
|
|
|
|
tokens += sum(
|
|
|
- TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
|
|
|
+ TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
|
|
+ for document in chunk_documents
|
|
|
)
|
|
|
|
|
|
# save vector index
|
|
|
- if dataset.indexing_technique == "high_quality":
|
|
|
- vector_index.add_nodes(chunk_nodes)
|
|
|
+ if vector_index:
|
|
|
+ vector_index.add_texts(chunk_documents)
|
|
|
|
|
|
# save keyword index
|
|
|
- keyword_table_index.add_nodes(chunk_nodes)
|
|
|
+ keyword_table_index.add_texts(chunk_documents)
|
|
|
|
|
|
- node_ids = [node.doc_id for node in chunk_nodes]
|
|
|
+ document_ids = [document.metadata['doc_id'] for document in chunk_documents]
|
|
|
db.session.query(DocumentSegment).filter(
|
|
|
- DocumentSegment.document_id == document.id,
|
|
|
- DocumentSegment.index_node_id.in_(node_ids),
|
|
|
+ DocumentSegment.document_id == dataset_document.id,
|
|
|
+ DocumentSegment.index_node_id.in_(document_ids),
|
|
|
DocumentSegment.status == "indexing"
|
|
|
).update({
|
|
|
DocumentSegment.status: "completed",
|
|
@@ -549,12 +528,12 @@ class IndexingRunner:
|
|
|
|
|
|
# update document status to completed
|
|
|
self._update_document_index_status(
|
|
|
- document_id=document.id,
|
|
|
+ document_id=dataset_document.id,
|
|
|
after_indexing_status="completed",
|
|
|
extra_update_params={
|
|
|
- Document.tokens: tokens,
|
|
|
- Document.completed_at: datetime.datetime.utcnow(),
|
|
|
- Document.indexing_latency: indexing_end_at - indexing_start_at,
|
|
|
+ DatasetDocument.tokens: tokens,
|
|
|
+ DatasetDocument.completed_at: datetime.datetime.utcnow(),
|
|
|
+ DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
|
|
}
|
|
|
)
|
|
|
|
|
@@ -569,25 +548,25 @@ class IndexingRunner:
|
|
|
"""
|
|
|
Update the document indexing status.
|
|
|
"""
|
|
|
- count = Document.query.filter_by(id=document_id, is_paused=True).count()
|
|
|
+ count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
|
|
|
if count > 0:
|
|
|
raise DocumentIsPausedException()
|
|
|
|
|
|
update_params = {
|
|
|
- Document.indexing_status: after_indexing_status
|
|
|
+ DatasetDocument.indexing_status: after_indexing_status
|
|
|
}
|
|
|
|
|
|
if extra_update_params:
|
|
|
update_params.update(extra_update_params)
|
|
|
|
|
|
- Document.query.filter_by(id=document_id).update(update_params)
|
|
|
+ DatasetDocument.query.filter_by(id=document_id).update(update_params)
|
|
|
db.session.commit()
|
|
|
|
|
|
- def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
|
|
|
+ def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
|
|
|
"""
|
|
|
Update the document segment by document id.
|
|
|
"""
|
|
|
- DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
|
|
|
+ DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
|
|
db.session.commit()
|
|
|
|
|
|
|