|
@@ -1,9 +1,11 @@
|
|
|
+import concurrent.futures
|
|
|
import json
|
|
|
-import threading
|
|
|
from typing import Optional
|
|
|
|
|
|
from flask import Flask, current_app
|
|
|
+from sqlalchemy.orm import load_only
|
|
|
|
|
|
+from configs import dify_config
|
|
|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
|
|
from core.rag.datasource.keyword.keyword_factory import Keyword
|
|
|
from core.rag.datasource.vdb.vector_factory import Vector
|
|
@@ -27,6 +29,7 @@ default_retrieval_model = {
|
|
|
|
|
|
|
|
|
class RetrievalService:
|
|
|
+ # Cache precompiled regular expressions to avoid repeated compilation
|
|
|
@classmethod
|
|
|
def retrieve(
|
|
|
cls,
|
|
@@ -41,74 +44,62 @@ class RetrievalService:
|
|
|
):
|
|
|
if not query:
|
|
|
return []
|
|
|
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
- if not dataset:
|
|
|
- return []
|
|
|
-
|
|
|
+ dataset = cls._get_dataset(dataset_id)
|
|
|
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
|
|
|
return []
|
|
|
+
|
|
|
all_documents: list[Document] = []
|
|
|
- threads: list[threading.Thread] = []
|
|
|
exceptions: list[str] = []
|
|
|
- # retrieval_model source with keyword
|
|
|
- if retrieval_method == "keyword_search":
|
|
|
- keyword_thread = threading.Thread(
|
|
|
- target=RetrievalService.keyword_search,
|
|
|
- kwargs={
|
|
|
- "flask_app": current_app._get_current_object(), # type: ignore
|
|
|
- "dataset_id": dataset_id,
|
|
|
- "query": query,
|
|
|
- "top_k": top_k,
|
|
|
- "all_documents": all_documents,
|
|
|
- "exceptions": exceptions,
|
|
|
- },
|
|
|
- )
|
|
|
- threads.append(keyword_thread)
|
|
|
- keyword_thread.start()
|
|
|
- # retrieval_model source with semantic
|
|
|
- if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
|
|
- embedding_thread = threading.Thread(
|
|
|
- target=RetrievalService.embedding_search,
|
|
|
- kwargs={
|
|
|
- "flask_app": current_app._get_current_object(), # type: ignore
|
|
|
- "dataset_id": dataset_id,
|
|
|
- "query": query,
|
|
|
- "top_k": top_k,
|
|
|
- "score_threshold": score_threshold,
|
|
|
- "reranking_model": reranking_model,
|
|
|
- "all_documents": all_documents,
|
|
|
- "retrieval_method": retrieval_method,
|
|
|
- "exceptions": exceptions,
|
|
|
- },
|
|
|
- )
|
|
|
- threads.append(embedding_thread)
|
|
|
- embedding_thread.start()
|
|
|
-
|
|
|
- # retrieval source with full text
|
|
|
- if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
|
|
- full_text_index_thread = threading.Thread(
|
|
|
- target=RetrievalService.full_text_index_search,
|
|
|
- kwargs={
|
|
|
- "flask_app": current_app._get_current_object(), # type: ignore
|
|
|
- "dataset_id": dataset_id,
|
|
|
- "query": query,
|
|
|
- "retrieval_method": retrieval_method,
|
|
|
- "score_threshold": score_threshold,
|
|
|
- "top_k": top_k,
|
|
|
- "reranking_model": reranking_model,
|
|
|
- "all_documents": all_documents,
|
|
|
- "exceptions": exceptions,
|
|
|
- },
|
|
|
- )
|
|
|
- threads.append(full_text_index_thread)
|
|
|
- full_text_index_thread.start()
|
|
|
|
|
|
- for thread in threads:
|
|
|
- thread.join()
|
|
|
+ # Optimize multithreading with thread pools
|
|
|
+ with concurrent.futures.ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_WORKER) as executor: # type: ignore
|
|
|
+ futures = []
|
|
|
+ if retrieval_method == "keyword_search":
|
|
|
+ futures.append(
|
|
|
+ executor.submit(
|
|
|
+ cls.keyword_search,
|
|
|
+ flask_app=current_app._get_current_object(), # type: ignore
|
|
|
+ dataset_id=dataset_id,
|
|
|
+ query=query,
|
|
|
+ top_k=top_k,
|
|
|
+ all_documents=all_documents,
|
|
|
+ exceptions=exceptions,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
|
|
+ futures.append(
|
|
|
+ executor.submit(
|
|
|
+ cls.embedding_search,
|
|
|
+ flask_app=current_app._get_current_object(), # type: ignore
|
|
|
+ dataset_id=dataset_id,
|
|
|
+ query=query,
|
|
|
+ top_k=top_k,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ reranking_model=reranking_model,
|
|
|
+ all_documents=all_documents,
|
|
|
+ retrieval_method=retrieval_method,
|
|
|
+ exceptions=exceptions,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
|
|
+ futures.append(
|
|
|
+ executor.submit(
|
|
|
+ cls.full_text_index_search,
|
|
|
+ flask_app=current_app._get_current_object(), # type: ignore
|
|
|
+ dataset_id=dataset_id,
|
|
|
+ query=query,
|
|
|
+ top_k=top_k,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ reranking_model=reranking_model,
|
|
|
+ all_documents=all_documents,
|
|
|
+ retrieval_method=retrieval_method,
|
|
|
+ exceptions=exceptions,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
|
|
|
|
|
|
if exceptions:
|
|
|
- exception_message = ";\n".join(exceptions)
|
|
|
- raise ValueError(exception_message)
|
|
|
+ raise ValueError(";\n".join(exceptions))
|
|
|
|
|
|
if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
|
|
|
data_post_processor = DataPostProcessor(
|
|
@@ -133,18 +124,21 @@ class RetrievalService:
|
|
|
)
|
|
|
return all_documents
|
|
|
|
|
|
+ @classmethod
|
|
|
+ def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
|
|
|
+ return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
+
|
|
|
@classmethod
|
|
|
def keyword_search(
|
|
|
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
|
|
|
):
|
|
|
with flask_app.app_context():
|
|
|
try:
|
|
|
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
+ dataset = cls._get_dataset(dataset_id)
|
|
|
if not dataset:
|
|
|
raise ValueError("dataset not found")
|
|
|
|
|
|
keyword = Keyword(dataset=dataset)
|
|
|
-
|
|
|
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
|
|
|
all_documents.extend(documents)
|
|
|
except Exception as e:
|
|
@@ -165,12 +159,11 @@ class RetrievalService:
|
|
|
):
|
|
|
with flask_app.app_context():
|
|
|
try:
|
|
|
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
+ dataset = cls._get_dataset(dataset_id)
|
|
|
if not dataset:
|
|
|
raise ValueError("dataset not found")
|
|
|
|
|
|
vector = Vector(dataset=dataset)
|
|
|
-
|
|
|
documents = vector.search_by_vector(
|
|
|
query,
|
|
|
search_type="similarity_score_threshold",
|
|
@@ -187,7 +180,7 @@ class RetrievalService:
|
|
|
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
|
|
|
):
|
|
|
data_post_processor = DataPostProcessor(
|
|
|
- str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
|
|
+ str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
|
|
|
)
|
|
|
all_documents.extend(
|
|
|
data_post_processor.invoke(
|
|
@@ -217,13 +210,11 @@ class RetrievalService:
|
|
|
):
|
|
|
with flask_app.app_context():
|
|
|
try:
|
|
|
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
+ dataset = cls._get_dataset(dataset_id)
|
|
|
if not dataset:
|
|
|
raise ValueError("dataset not found")
|
|
|
|
|
|
- vector_processor = Vector(
|
|
|
- dataset=dataset,
|
|
|
- )
|
|
|
+ vector_processor = Vector(dataset=dataset)
|
|
|
|
|
|
documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
|
|
|
if documents:
|
|
@@ -234,7 +225,7 @@ class RetrievalService:
|
|
|
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
|
|
|
):
|
|
|
data_post_processor = DataPostProcessor(
|
|
|
- str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
|
|
+ str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
|
|
|
)
|
|
|
all_documents.extend(
|
|
|
data_post_processor.invoke(
|
|
@@ -253,64 +244,105 @@ class RetrievalService:
|
|
|
def escape_query_for_search(query: str) -> str:
|
|
|
return json.dumps(query).strip('"')
|
|
|
|
|
|
- @staticmethod
|
|
|
- def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
|
|
|
- records = []
|
|
|
- include_segment_ids = []
|
|
|
- segment_child_map = {}
|
|
|
- for document in documents:
|
|
|
- document_id = document.metadata.get("document_id")
|
|
|
- dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
|
|
- if dataset_document:
|
|
|
+ @classmethod
|
|
|
+ def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
|
|
|
+ """Format retrieval documents with optimized batch processing"""
|
|
|
+ if not documents:
|
|
|
+ return []
|
|
|
+
|
|
|
+ try:
|
|
|
+ # Collect document IDs
|
|
|
+ document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
|
|
|
+ if not document_ids:
|
|
|
+ return []
|
|
|
+
|
|
|
+ # Batch query dataset documents
|
|
|
+ dataset_documents = {
|
|
|
+ doc.id: doc
|
|
|
+ for doc in db.session.query(DatasetDocument)
|
|
|
+ .filter(DatasetDocument.id.in_(document_ids))
|
|
|
+ .options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
|
|
|
+ .all()
|
|
|
+ }
|
|
|
+
|
|
|
+ records = []
|
|
|
+ include_segment_ids = set()
|
|
|
+ segment_child_map = {}
|
|
|
+
|
|
|
+ # Process documents
|
|
|
+ for document in documents:
|
|
|
+ document_id = document.metadata.get("document_id")
|
|
|
+ if document_id not in dataset_documents:
|
|
|
+ continue
|
|
|
+
|
|
|
+ dataset_document = dataset_documents[document_id]
|
|
|
+
|
|
|
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
|
|
+ # Handle parent-child documents
|
|
|
child_index_node_id = document.metadata.get("doc_id")
|
|
|
- result = (
|
|
|
- db.session.query(ChildChunk, DocumentSegment)
|
|
|
- .join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
|
|
|
+
|
|
|
+ child_chunk = (
|
|
|
+ db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
|
|
|
+ )
|
|
|
+
|
|
|
+ if not child_chunk:
|
|
|
+ continue
|
|
|
+
|
|
|
+ segment = (
|
|
|
+ db.session.query(DocumentSegment)
|
|
|
.filter(
|
|
|
- ChildChunk.index_node_id == child_index_node_id,
|
|
|
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
|
|
DocumentSegment.enabled == True,
|
|
|
DocumentSegment.status == "completed",
|
|
|
+ DocumentSegment.id == child_chunk.segment_id,
|
|
|
+ )
|
|
|
+ .options(
|
|
|
+ load_only(
|
|
|
+ DocumentSegment.id,
|
|
|
+ DocumentSegment.content,
|
|
|
+ DocumentSegment.answer,
|
|
|
+ DocumentSegment.doc_metadata,
|
|
|
+ )
|
|
|
)
|
|
|
.first()
|
|
|
)
|
|
|
- if result:
|
|
|
- child_chunk, segment = result
|
|
|
- if not segment:
|
|
|
- continue
|
|
|
- if segment.id not in include_segment_ids:
|
|
|
- include_segment_ids.append(segment.id)
|
|
|
- child_chunk_detail = {
|
|
|
- "id": child_chunk.id,
|
|
|
- "content": child_chunk.content,
|
|
|
- "position": child_chunk.position,
|
|
|
- "score": document.metadata.get("score", 0.0),
|
|
|
- }
|
|
|
- map_detail = {
|
|
|
- "max_score": document.metadata.get("score", 0.0),
|
|
|
- "child_chunks": [child_chunk_detail],
|
|
|
- }
|
|
|
- segment_child_map[segment.id] = map_detail
|
|
|
- record = {
|
|
|
- "segment": segment,
|
|
|
- }
|
|
|
- records.append(record)
|
|
|
- else:
|
|
|
- child_chunk_detail = {
|
|
|
- "id": child_chunk.id,
|
|
|
- "content": child_chunk.content,
|
|
|
- "position": child_chunk.position,
|
|
|
- "score": document.metadata.get("score", 0.0),
|
|
|
- }
|
|
|
- segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
|
|
- segment_child_map[segment.id]["max_score"] = max(
|
|
|
- segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
|
|
- )
|
|
|
- else:
|
|
|
+
|
|
|
+ if not segment:
|
|
|
continue
|
|
|
+
|
|
|
+ if segment.id not in include_segment_ids:
|
|
|
+ include_segment_ids.add(segment.id)
|
|
|
+ child_chunk_detail = {
|
|
|
+ "id": child_chunk.id,
|
|
|
+ "content": child_chunk.content,
|
|
|
+ "position": child_chunk.position,
|
|
|
+ "score": document.metadata.get("score", 0.0),
|
|
|
+ }
|
|
|
+ map_detail = {
|
|
|
+ "max_score": document.metadata.get("score", 0.0),
|
|
|
+ "child_chunks": [child_chunk_detail],
|
|
|
+ }
|
|
|
+ segment_child_map[segment.id] = map_detail
|
|
|
+ record = {
|
|
|
+ "segment": segment,
|
|
|
+ }
|
|
|
+ records.append(record)
|
|
|
+ else:
|
|
|
+ child_chunk_detail = {
|
|
|
+ "id": child_chunk.id,
|
|
|
+ "content": child_chunk.content,
|
|
|
+ "position": child_chunk.position,
|
|
|
+ "score": document.metadata.get("score", 0.0),
|
|
|
+ }
|
|
|
+ segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
|
|
+ segment_child_map[segment.id]["max_score"] = max(
|
|
|
+ segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
|
|
+ )
|
|
|
else:
|
|
|
- index_node_id = document.metadata["doc_id"]
|
|
|
+ # Handle normal documents
|
|
|
+ index_node_id = document.metadata.get("doc_id")
|
|
|
+ if not index_node_id:
|
|
|
+ continue
|
|
|
|
|
|
segment = (
|
|
|
db.session.query(DocumentSegment)
|
|
@@ -325,16 +357,24 @@ class RetrievalService:
|
|
|
|
|
|
if not segment:
|
|
|
continue
|
|
|
- include_segment_ids.append(segment.id)
|
|
|
+
|
|
|
+ include_segment_ids.add(segment.id)
|
|
|
record = {
|
|
|
"segment": segment,
|
|
|
- "score": document.metadata.get("score", None),
|
|
|
+ "score": document.metadata.get("score"), # type: ignore
|
|
|
+ "segment_metadata": segment.doc_metadata,
|
|
|
}
|
|
|
-
|
|
|
records.append(record)
|
|
|
+
|
|
|
+ # Add child chunks information to records
|
|
|
for record in records:
|
|
|
if record["segment"].id in segment_child_map:
|
|
|
- record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
|
|
|
+ record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
|
|
|
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
|
|
|
|
|
- return [RetrievalSegments(**record) for record in records]
|
|
|
+ return [RetrievalSegments(**record) for record in records]
|
|
|
+ except Exception as e:
|
|
|
+ db.session.rollback()
|
|
|
+ raise e
|
|
|
+ finally:
|
|
|
+ db.session.close()
|