|
@@ -33,6 +33,7 @@ class RetrievalService:
|
|
|
return []
|
|
|
all_documents = []
|
|
|
threads = []
|
|
|
+ exceptions = []
|
|
|
# retrieval_model source with keyword
|
|
|
if retrival_method == 'keyword_search':
|
|
|
keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
|
|
@@ -40,7 +41,8 @@ class RetrievalService:
|
|
|
'dataset_id': dataset_id,
|
|
|
'query': query,
|
|
|
'top_k': top_k,
|
|
|
- 'all_documents': all_documents
|
|
|
+ 'all_documents': all_documents,
|
|
|
+ 'exceptions': exceptions,
|
|
|
})
|
|
|
threads.append(keyword_thread)
|
|
|
keyword_thread.start()
|
|
@@ -54,7 +56,8 @@ class RetrievalService:
|
|
|
'score_threshold': score_threshold,
|
|
|
'reranking_model': reranking_model,
|
|
|
'all_documents': all_documents,
|
|
|
- 'retrival_method': retrival_method
|
|
|
+ 'retrival_method': retrival_method,
|
|
|
+ 'exceptions': exceptions,
|
|
|
})
|
|
|
threads.append(embedding_thread)
|
|
|
embedding_thread.start()
|
|
@@ -69,7 +72,8 @@ class RetrievalService:
|
|
|
'score_threshold': score_threshold,
|
|
|
'top_k': top_k,
|
|
|
'reranking_model': reranking_model,
|
|
|
- 'all_documents': all_documents
|
|
|
+ 'all_documents': all_documents,
|
|
|
+ 'exceptions': exceptions,
|
|
|
})
|
|
|
threads.append(full_text_index_thread)
|
|
|
full_text_index_thread.start()
|
|
@@ -77,6 +81,10 @@ class RetrievalService:
|
|
|
for thread in threads:
|
|
|
thread.join()
|
|
|
|
|
|
+ if exceptions:
|
|
|
+ exception_message = ';\n'.join(exceptions)
|
|
|
+ raise Exception(exception_message)
|
|
|
+
|
|
|
if retrival_method == 'hybrid_search':
|
|
|
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
|
|
all_documents = data_post_processor.invoke(
|
|
@@ -89,82 +97,91 @@ class RetrievalService:
|
|
|
|
|
|
@classmethod
|
|
|
def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
|
|
- top_k: int, all_documents: list):
|
|
|
+ top_k: int, all_documents: list, exceptions: list):
|
|
|
with flask_app.app_context():
|
|
|
- dataset = db.session.query(Dataset).filter(
|
|
|
- Dataset.id == dataset_id
|
|
|
- ).first()
|
|
|
-
|
|
|
- keyword = Keyword(
|
|
|
- dataset=dataset
|
|
|
- )
|
|
|
-
|
|
|
- documents = keyword.search(
|
|
|
- query,
|
|
|
- top_k=top_k
|
|
|
- )
|
|
|
- all_documents.extend(documents)
|
|
|
+ try:
|
|
|
+ dataset = db.session.query(Dataset).filter(
|
|
|
+ Dataset.id == dataset_id
|
|
|
+ ).first()
|
|
|
+
|
|
|
+ keyword = Keyword(
|
|
|
+ dataset=dataset
|
|
|
+ )
|
|
|
+
|
|
|
+ documents = keyword.search(
|
|
|
+ query,
|
|
|
+ top_k=top_k
|
|
|
+ )
|
|
|
+ all_documents.extend(documents)
|
|
|
+ except Exception as e:
|
|
|
+ exceptions.append(str(e))
|
|
|
|
|
|
@classmethod
|
|
|
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
|
|
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
|
|
- all_documents: list, retrival_method: str):
|
|
|
+ all_documents: list, retrival_method: str, exceptions: list):
|
|
|
with flask_app.app_context():
|
|
|
- dataset = db.session.query(Dataset).filter(
|
|
|
- Dataset.id == dataset_id
|
|
|
- ).first()
|
|
|
-
|
|
|
- vector = Vector(
|
|
|
- dataset=dataset
|
|
|
- )
|
|
|
-
|
|
|
- documents = vector.search_by_vector(
|
|
|
- query,
|
|
|
- search_type='similarity_score_threshold',
|
|
|
- top_k=top_k,
|
|
|
- score_threshold=score_threshold,
|
|
|
- filter={
|
|
|
- 'group_id': [dataset.id]
|
|
|
- }
|
|
|
- )
|
|
|
-
|
|
|
- if documents:
|
|
|
- if reranking_model and retrival_method == 'semantic_search':
|
|
|
- data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
|
|
- all_documents.extend(data_post_processor.invoke(
|
|
|
- query=query,
|
|
|
- documents=documents,
|
|
|
- score_threshold=score_threshold,
|
|
|
- top_n=len(documents)
|
|
|
- ))
|
|
|
- else:
|
|
|
- all_documents.extend(documents)
|
|
|
+ try:
|
|
|
+ dataset = db.session.query(Dataset).filter(
|
|
|
+ Dataset.id == dataset_id
|
|
|
+ ).first()
|
|
|
+
|
|
|
+ vector = Vector(
|
|
|
+ dataset=dataset
|
|
|
+ )
|
|
|
+
|
|
|
+ documents = vector.search_by_vector(
|
|
|
+ query,
|
|
|
+ search_type='similarity_score_threshold',
|
|
|
+ top_k=top_k,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ filter={
|
|
|
+ 'group_id': [dataset.id]
|
|
|
+ }
|
|
|
+ )
|
|
|
+
|
|
|
+ if documents:
|
|
|
+ if reranking_model and retrival_method == 'semantic_search':
|
|
|
+ data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
|
|
+ all_documents.extend(data_post_processor.invoke(
|
|
|
+ query=query,
|
|
|
+ documents=documents,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ top_n=len(documents)
|
|
|
+ ))
|
|
|
+ else:
|
|
|
+ all_documents.extend(documents)
|
|
|
+ except Exception as e:
|
|
|
+ exceptions.append(str(e))
|
|
|
|
|
|
@classmethod
|
|
|
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
|
|
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
|
|
- all_documents: list, retrival_method: str):
|
|
|
+ all_documents: list, retrival_method: str, exceptions: list):
|
|
|
with flask_app.app_context():
|
|
|
- dataset = db.session.query(Dataset).filter(
|
|
|
- Dataset.id == dataset_id
|
|
|
- ).first()
|
|
|
-
|
|
|
- vector_processor = Vector(
|
|
|
- dataset=dataset,
|
|
|
- )
|
|
|
-
|
|
|
- documents = vector_processor.search_by_full_text(
|
|
|
- query,
|
|
|
- top_k=top_k
|
|
|
- )
|
|
|
- if documents:
|
|
|
- if reranking_model and retrival_method == 'full_text_search':
|
|
|
- data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
|
|
- all_documents.extend(data_post_processor.invoke(
|
|
|
- query=query,
|
|
|
- documents=documents,
|
|
|
- score_threshold=score_threshold,
|
|
|
- top_n=len(documents)
|
|
|
- ))
|
|
|
- else:
|
|
|
- all_documents.extend(documents)
|
|
|
+ try:
|
|
|
+ dataset = db.session.query(Dataset).filter(
|
|
|
+ Dataset.id == dataset_id
|
|
|
+ ).first()
|
|
|
+
|
|
|
+ vector_processor = Vector(
|
|
|
+ dataset=dataset,
|
|
|
+ )
|
|
|
+
|
|
|
+ documents = vector_processor.search_by_full_text(
|
|
|
+ query,
|
|
|
+ top_k=top_k
|
|
|
+ )
|
|
|
+ if documents:
|
|
|
+ if reranking_model and retrival_method == 'full_text_search':
|
|
|
+ data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
|
|
+ all_documents.extend(data_post_processor.invoke(
|
|
|
+ query=query,
|
|
|
+ documents=documents,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ top_n=len(documents)
|
|
|
+ ))
|
|
|
+ else:
|
|
|
+ all_documents.extend(documents)
|
|
|
+ except Exception as e:
|
|
|
+ exceptions.append(str(e))
|