|
@@ -494,6 +494,7 @@ class IndexingRunner:
|
|
|
Split the text documents into nodes.
|
|
|
"""
|
|
|
all_documents = []
|
|
|
+ all_qa_documents = []
|
|
|
for text_doc in text_docs:
|
|
|
# document clean
|
|
|
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
|
@@ -502,58 +503,56 @@ class IndexingRunner:
|
|
|
# parse document to nodes
|
|
|
documents = splitter.split_documents([text_doc])
|
|
|
split_documents = []
|
|
|
+ for document_node in documents:
|
|
|
+ doc_id = str(uuid.uuid4())
|
|
|
+ hash = helper.generate_text_hash(document_node.page_content)
|
|
|
+ document_node.metadata['doc_id'] = doc_id
|
|
|
+ document_node.metadata['doc_hash'] = hash
|
|
|
+
|
|
|
+ split_documents.append(document_node)
|
|
|
+ all_documents.extend(split_documents)
|
|
|
+ # processing qa document
|
|
|
+ if document_form == 'qa_model':
|
|
|
llm: StreamableOpenAI = LLMBuilder.to_llm(
|
|
|
tenant_id=tenant_id,
|
|
|
model_name='gpt-3.5-turbo',
|
|
|
max_tokens=2000
|
|
|
)
|
|
|
- for i in range(0, len(documents), 10):
|
|
|
+ for i in range(0, len(all_documents), 10):
|
|
|
threads = []
|
|
|
- sub_documents = documents[i:i + 10]
|
|
|
+ sub_documents = all_documents[i:i + 10]
|
|
|
for doc in sub_documents:
|
|
|
- document_format_thread = threading.Thread(target=self.format_document, kwargs={
|
|
|
- 'llm': llm, 'document_node': doc, 'split_documents': split_documents,
|
|
|
- 'document_form': document_form})
|
|
|
+ document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
|
|
|
+ 'llm': llm, 'document_node': doc, 'all_qa_documents': all_qa_documents})
|
|
|
threads.append(document_format_thread)
|
|
|
document_format_thread.start()
|
|
|
for thread in threads:
|
|
|
thread.join()
|
|
|
-
|
|
|
- all_documents.extend(split_documents)
|
|
|
-
|
|
|
+ return all_qa_documents
|
|
|
return all_documents
|
|
|
|
|
|
- def format_document(self, llm: StreamableOpenAI, document_node, split_documents, document_form: str):
|
|
|
+ def format_qa_document(self, llm: StreamableOpenAI, document_node, all_qa_documents):
|
|
|
format_documents = []
|
|
|
if document_node.page_content is None or not document_node.page_content.strip():
|
|
|
- return format_documents
|
|
|
- if document_form == 'text_model':
|
|
|
- # text model document
|
|
|
- doc_id = str(uuid.uuid4())
|
|
|
- hash = helper.generate_text_hash(document_node.page_content)
|
|
|
-
|
|
|
- document_node.metadata['doc_id'] = doc_id
|
|
|
- document_node.metadata['doc_hash'] = hash
|
|
|
+ return
|
|
|
+ try:
|
|
|
+ # qa model document
|
|
|
+ response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
|
|
|
+ document_qa_list = self.format_split_text(response)
|
|
|
+ qa_documents = []
|
|
|
+ for result in document_qa_list:
|
|
|
+ qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
|
|
|
+ doc_id = str(uuid.uuid4())
|
|
|
+ hash = helper.generate_text_hash(result['question'])
|
|
|
+ qa_document.metadata['answer'] = result['answer']
|
|
|
+ qa_document.metadata['doc_id'] = doc_id
|
|
|
+ qa_document.metadata['doc_hash'] = hash
|
|
|
+ qa_documents.append(qa_document)
|
|
|
+ format_documents.extend(qa_documents)
|
|
|
+ except Exception as e:
|
|
|
+ logging.error(str(e))
|
|
|
|
|
|
- format_documents.append(document_node)
|
|
|
- elif document_form == 'qa_model':
|
|
|
- try:
|
|
|
- # qa model document
|
|
|
- response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
|
|
|
- document_qa_list = self.format_split_text(response)
|
|
|
- qa_documents = []
|
|
|
- for result in document_qa_list:
|
|
|
- qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
|
|
|
- doc_id = str(uuid.uuid4())
|
|
|
- hash = helper.generate_text_hash(result['question'])
|
|
|
- qa_document.metadata['answer'] = result['answer']
|
|
|
- qa_document.metadata['doc_id'] = doc_id
|
|
|
- qa_document.metadata['doc_hash'] = hash
|
|
|
- qa_documents.append(qa_document)
|
|
|
- format_documents.extend(qa_documents)
|
|
|
- except Exception as e:
|
|
|
- logging.error(str(e))
|
|
|
- split_documents.extend(format_documents)
|
|
|
+ all_qa_documents.extend(format_documents)
|
|
|
|
|
|
|
|
|
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
|