|
@@ -1,5 +1,7 @@
|
|
|
import json
|
|
|
-from typing import Any
|
|
|
+import logging
|
|
|
+from typing import Any, Optional
|
|
|
+from urllib.parse import urlparse
|
|
|
|
|
|
import requests
|
|
|
from elasticsearch import Elasticsearch
|
|
@@ -7,16 +9,20 @@ from flask import current_app
|
|
|
from pydantic import BaseModel, model_validator
|
|
|
|
|
|
from core.rag.datasource.entity.embedding import Embeddings
|
|
|
+from core.rag.datasource.vdb.field import Field
|
|
|
from core.rag.datasource.vdb.vector_base import BaseVector
|
|
|
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
|
|
from core.rag.datasource.vdb.vector_type import VectorType
|
|
|
from core.rag.models.document import Document
|
|
|
+from extensions.ext_redis import redis_client
|
|
|
from models.dataset import Dataset
|
|
|
|
|
|
+logger = logging.getLogger(__name__)
|
|
|
+
|
|
|
|
|
|
class ElasticSearchConfig(BaseModel):
|
|
|
host: str
|
|
|
- port: str
|
|
|
+ port: int
|
|
|
username: str
|
|
|
password: str
|
|
|
|
|
@@ -37,12 +43,19 @@ class ElasticSearchVector(BaseVector):
|
|
|
def __init__(self, index_name: str, config: ElasticSearchConfig, attributes: list):
|
|
|
super().__init__(index_name.lower())
|
|
|
self._client = self._init_client(config)
|
|
|
+ self._version = self._get_version()
|
|
|
+ self._check_version()
|
|
|
self._attributes = attributes
|
|
|
|
|
|
def _init_client(self, config: ElasticSearchConfig) -> Elasticsearch:
|
|
|
try:
|
|
|
+ parsed_url = urlparse(config.host)
|
|
|
+ if parsed_url.scheme in ['http', 'https']:
|
|
|
+ hosts = f'{config.host}:{config.port}'
|
|
|
+ else:
|
|
|
+ hosts = f'http://{config.host}:{config.port}'
|
|
|
client = Elasticsearch(
|
|
|
- hosts=f'{config.host}:{config.port}',
|
|
|
+ hosts=hosts,
|
|
|
basic_auth=(config.username, config.password),
|
|
|
request_timeout=100000,
|
|
|
retry_on_timeout=True,
|
|
@@ -53,42 +66,27 @@ class ElasticSearchVector(BaseVector):
|
|
|
|
|
|
return client
|
|
|
|
|
|
+ def _get_version(self) -> str:
|
|
|
+ info = self._client.info()
|
|
|
+ return info['version']['number']
|
|
|
+
|
|
|
+ def _check_version(self):
|
|
|
+ if self._version < '8.0.0':
|
|
|
+ raise ValueError("Elasticsearch vector database version must be greater than 8.0.0")
|
|
|
+
|
|
|
def get_type(self) -> str:
|
|
|
return 'elasticsearch'
|
|
|
|
|
|
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
|
|
uuids = self._get_uuids(documents)
|
|
|
- texts = [d.page_content for d in documents]
|
|
|
- metadatas = [d.metadata for d in documents]
|
|
|
-
|
|
|
- if not self._client.indices.exists(index=self._collection_name):
|
|
|
- dim = len(embeddings[0])
|
|
|
- mapping = {
|
|
|
- "properties": {
|
|
|
- "text": {
|
|
|
- "type": "text"
|
|
|
- },
|
|
|
- "vector": {
|
|
|
- "type": "dense_vector",
|
|
|
- "index": True,
|
|
|
- "dims": dim,
|
|
|
- "similarity": "l2_norm"
|
|
|
- },
|
|
|
- }
|
|
|
- }
|
|
|
- self._client.indices.create(index=self._collection_name, mappings=mapping)
|
|
|
-
|
|
|
- added_ids = []
|
|
|
- for i, text in enumerate(texts):
|
|
|
+ for i in range(len(documents)):
|
|
|
self._client.index(index=self._collection_name,
|
|
|
id=uuids[i],
|
|
|
document={
|
|
|
- "text": text,
|
|
|
- "vector": embeddings[i] if embeddings[i] else None,
|
|
|
- "metadata": metadatas[i] if metadatas[i] else {},
|
|
|
+ Field.CONTENT_KEY.value: documents[i].page_content,
|
|
|
+ Field.VECTOR.value: embeddings[i] if embeddings[i] else None,
|
|
|
+ Field.METADATA_KEY.value: documents[i].metadata if documents[i].metadata else {}
|
|
|
})
|
|
|
- added_ids.append(uuids[i])
|
|
|
-
|
|
|
self._client.indices.refresh(index=self._collection_name)
|
|
|
return uuids
|
|
|
|
|
@@ -116,28 +114,21 @@ class ElasticSearchVector(BaseVector):
|
|
|
self._client.indices.delete(index=self._collection_name)
|
|
|
|
|
|
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
|
|
- query_str = {
|
|
|
- "query": {
|
|
|
- "script_score": {
|
|
|
- "query": {
|
|
|
- "match_all": {}
|
|
|
- },
|
|
|
- "script": {
|
|
|
- "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
|
|
|
- "params": {
|
|
|
- "query_vector": query_vector
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ top_k = kwargs.get("top_k", 10)
|
|
|
+ knn = {
|
|
|
+ "field": Field.VECTOR.value,
|
|
|
+ "query_vector": query_vector,
|
|
|
+ "k": top_k
|
|
|
}
|
|
|
|
|
|
- results = self._client.search(index=self._collection_name, body=query_str)
|
|
|
+ results = self._client.search(index=self._collection_name, knn=knn, size=top_k)
|
|
|
|
|
|
docs_and_scores = []
|
|
|
for hit in results['hits']['hits']:
|
|
|
docs_and_scores.append(
|
|
|
- (Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']), hit['_score']))
|
|
|
+ (Document(page_content=hit['_source'][Field.CONTENT_KEY.value],
|
|
|
+ vector=hit['_source'][Field.VECTOR.value],
|
|
|
+ metadata=hit['_source'][Field.METADATA_KEY.value]), hit['_score']))
|
|
|
|
|
|
docs = []
|
|
|
for doc, score in docs_and_scores:
|
|
@@ -146,25 +137,61 @@ class ElasticSearchVector(BaseVector):
|
|
|
doc.metadata['score'] = score
|
|
|
docs.append(doc)
|
|
|
|
|
|
- # Sort the documents by score in descending order
|
|
|
- docs = sorted(docs, key=lambda x: x.metadata['score'], reverse=True)
|
|
|
-
|
|
|
return docs
|
|
|
+
|
|
|
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
|
|
query_str = {
|
|
|
"match": {
|
|
|
- "text": query
|
|
|
+ Field.CONTENT_KEY.value: query
|
|
|
}
|
|
|
}
|
|
|
results = self._client.search(index=self._collection_name, query=query_str)
|
|
|
docs = []
|
|
|
for hit in results['hits']['hits']:
|
|
|
- docs.append(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']))
|
|
|
+ docs.append(Document(
|
|
|
+ page_content=hit['_source'][Field.CONTENT_KEY.value],
|
|
|
+ vector=hit['_source'][Field.VECTOR.value],
|
|
|
+ metadata=hit['_source'][Field.METADATA_KEY.value],
|
|
|
+ ))
|
|
|
|
|
|
return docs
|
|
|
|
|
|
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
|
|
- return self.add_texts(texts, embeddings, **kwargs)
|
|
|
+ metadatas = [d.metadata for d in texts]
|
|
|
+ self.create_collection(embeddings, metadatas)
|
|
|
+ self.add_texts(texts, embeddings, **kwargs)
|
|
|
+
|
|
|
+ def create_collection(
|
|
|
+ self, embeddings: list, metadatas: Optional[list[dict]] = None, index_params: Optional[dict] = None
|
|
|
+ ):
|
|
|
+ lock_name = f'vector_indexing_lock_{self._collection_name}'
|
|
|
+ with redis_client.lock(lock_name, timeout=20):
|
|
|
+ collection_exist_cache_key = f'vector_indexing_{self._collection_name}'
|
|
|
+ if redis_client.get(collection_exist_cache_key):
|
|
|
+ logger.info(f"Collection {self._collection_name} already exists.")
|
|
|
+ return
|
|
|
+
|
|
|
+ if not self._client.indices.exists(index=self._collection_name):
|
|
|
+ dim = len(embeddings[0])
|
|
|
+ mappings = {
|
|
|
+ "properties": {
|
|
|
+ Field.CONTENT_KEY.value: {"type": "text"},
|
|
|
+ Field.VECTOR.value: { # Make sure the dimension is correct here
|
|
|
+ "type": "dense_vector",
|
|
|
+ "dims": dim,
|
|
|
+ "similarity": "cosine"
|
|
|
+ },
|
|
|
+ Field.METADATA_KEY.value: {
|
|
|
+ "type": "object",
|
|
|
+ "properties": {
|
|
|
+ "doc_id": {"type": "keyword"} # Map doc_id to keyword type
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ self._client.indices.create(index=self._collection_name, mappings=mappings)
|
|
|
+
|
|
|
+ redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
|
|
|
|
|
|
|
|
class ElasticSearchVectorFactory(AbstractVectorFactory):
|